Competing Dichotomies in Teaching Computer Programming to Beginner-Students

by

David Nandigam

Department of Information Technology

AIS St Helens, Auckland

davidn@ais.ac.nz
and

Hanoku Bathula

Department of International Business

AIS St Helens, Auckland

hanokub@ais.ac.nz
Working Paper No. ?

December 2011

Abstract

The goal in teaching computer programming is to develop in students the capabilities required of a professional software developer. Beginner programmers suffer from a wide range of difficulties and deficits. The important distinction made in this regard is between knowledge and skill. Several studies suggest that undertaking programming for meeting a real need is still a challenge for many students even at the higher level programming courses where programming knowledge is the focus of teaching. The underlying goal of this paper is to initiate a dialog in the information technology teaching community on how to teach and assess computer programming courses, and to propose a framework of expectations for first-year courses and beginner-students. The paper reviews extant literature and identifies four major programming dichotomies that students confront in learning programming: (i) knowledge versus application (ii) comprehension versus generation, (iii) procedural versus object oriented, and (iv) imperative versus functional. The paper concludes by making suggestions for developing more comprehensive strategies for teaching programming.

Keywords: Teaching strategies, computer programming, beginner students, information technology curriculum, and dichotomies.

Introduction
Programming with the specific aim of meeting an authentic need is the skill that computer science students are expected to master. Learning to program is hard however. Beginner programmers suffer from a wide range of difficulties and deficits (Mayer 1981), conceptual ‘bugs’ (Pea 1986) and misconceptions (Spohrer & Soloway 1986). Considering the problems programming students are expected to solve in a programming course, de Raadt, Toleman, & Watson (2006) developed a three-level scale: ‘system’, ‘algorithmic’ and ‘sub-algorithmic’. Problems at sub-algorithmic level may look simple because they do not involve algorithms or system designs. Examples of problems of this scale include avoiding division-by-zero, achieving repetition until a sentinel is found, and so on. Strategies used to solve problems at this level are particularly relevant to beginners in their initial exposure to programming, yet these strategies are also a fundamental part of solving problems at any level. Unfortunately, several studies suggest that undertaking programming for meeting a real need is still a challenge for many students even at the conclusion of one or two years of studying programming. Lister, Adams, Fitzgerald, Fone, Hamer, Lindholm, McCartney, Moström, Sanders, Seppälä, Simon, & Thomas (2004) attributed poor results to poor problem-solving ability in students. The BRACElet project conducted at Auckland University of Technology showed that many students exhibit a fragile programming knowledge and very few can demonstrate clear understanding of programming strategy (Whalley, Lister, Thompson, Clear, Robins, Kumar, & Prasad, 2006).
In Greek legend, Sisyphus, a king in ancient Greece who offended Zeus was given a punishment to roll a huge boulder to the top of a steep hill; each time the boulder neared the top it rolled back down and Sisyphus was forced to start again. The underlying goal of this paper is to investigate through literature review as to why teaching programming is still – after over 40 years since it was first spelled out (Bennedsen & Caspersen, 2008) - and initiate a dialog in the information technology teaching community on how to teach and assess computer programming courses.

Emerging Challenges

Unlike a decade ago, the domain of IT is invaded by every passerby. Whose domain is IT – engineers, scientists, technologists, commerce graduates or linguists? Practically, anyone can wander in. In the context of stage 1 of Bachelor’s IT Programme, participants come from a variety of backgrounds. They differ linguistically, educationally, culturally and professionally. For example, students could range from school leavers to mature-aged students or anywhere in between. The entry standard, even of those who studied computing before, varies from year to year. They all share one common factor, though. Unfortunately, their prior educational experiences in the computing discipline may have done anything but prepare them for professional practice. This is certainly the reason why programming courses are regarded by students as difficult and have high dropout rates (Robins, Rountree, & Rountree, 2003)
Teachers now face the daunting task of somehow making sense - to this conglomeration of non-computing clientele - of the concepts such as initializing a sum, counting variables, using a correct looping strategy for the given problems (de Raadt et al., 2004). As a result, often the instruction has primarily focused on programming knowledge and it has been presented in a similar manner to the traditional curriculum. That is, instructional materials may have consisted of several small exercises and assignments completed by students individually. In other words, class-work is typically simplified to enable students to engage in manageable chunks of work. Periodical assignments come neatly packaged with a well-specified set of requirements to be implemented. In the process, the goal of IT teaching is deplorably lost. Is the goal knowledge or skill? Passing the exam or surviving the industry? Educationists (teachers, I mean) often take cover under theoretical frameworks for their lack of vision. ACM & IEEE-CS Joint Task Force on Computing Curricula in their reviews since1991 has maintained that programming as ‘activities that surround the description, development and effective implementation of algorithmic solutions to well- specified problems’. Also the emphasis on ‘well-specified’ problems becomes problematic when the focus shifts from ‘developing programmes in the class-room’ to ‘developing systems in the real world scenarios’ (Clear, 2001). By this, students seemed to be expected to learn strategies implicitly by seeing examples and solving ‘neatly graded’ problems. While this being so, another question very frequently asked is whether assessment in IT a ‘written language exercise’ (Coburn & Miller, 2004).
Programming Dichotomies
It is generally accepted that it takes about ten years of experience to turn a student programmer into an expert programmer (Bennedsen & Caspersen, 2008). While there can be a lot of debate as to the definition of an ‘expert programmer’ the following section outlines three themes that influence the teaching of computer programming.

Knowledge Vs Application
Studies show that there are positive correlations between the knowledge students’ gain from instructional materials and the skill they develop by applying it for solving problems (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Pirolli & Recker, 1994; Gerdes, Jeuring, & Heeren, 2010). Obviously, programming ability must rest on a foundation of knowledge; it is, however, possible to distinguish programming knowledge from programming strategies. Knowledge, as it is understood, involves the declarative nature (syntax and semantics) of a programming language, while strategies describe how programming knowledge is applied (Davies, 1993). Knowledge is only part of the picture; programming strategies involve the application of programming knowledge to solve a problem. Soloway (1985) describes programming strategies as plans and Wallingford (1996) views them as patterns or algorithms. A strategy, of course, is to be able to incorporate the plans, patters and algorithms into a single solution. Whalley et al., (2006) therefore, feel that teaching should reach beyond a focus on syntax and target programming strategies. Robins, Rountree, & Rountree (2003) suggest that the key to beginners becoming experts lies in them learning programming strategies rather than just acquiring programming knowledge.
Comprehension Vs Generation

Another distinction is found between programming comprehension (the ability to read and understand the outcomes of an existing piece of code) and generation (the ability to create a piece of code that achieves certain outcomes). Whalley et al. (2006) contend that “a vital step toward being able to write programs is the capacity to read a piece of code and describe it” (p. 249). It means that a student learning programming must be able to comprehend a solution (and the knowledge and strategies within it) before they can generate a solution at the same level of difficulty. According to Brooks (1983), experts and beginner programmers can be distinguished by how they undertake comprehension. Again, with the ability to comprehend code comes the ability to reuse the pieces of code. It is widely recognized that practicing reuse does not happen automatically (Auer, 1995; Berg, Cline, & Girou, 1995; Fayad & Tsai, 1995; Frakes & Fox, 1995).
Procedural Vs Object-Oriented
According to the ACM curricula report, object-oriented programming emphasizes the principles of design from the very beginning. Object-oriented approach has been regarded as ‘natural, easy to use and powerful’ in the sense that objects are natural features of problem domains, and are represented as explicit entities in the programming domain, so the mapping between domains is simple and should support and facilitate object-oriented design/programming. However, Detienne (1990), Muller, Haberman, & Ginat (2007) and Mittermeir, Syslo, Benaya, & Zur (2008) do not support this position. They argue that identifying objects is not an easy process, that objects identified in the problem domain are not necessarily useful in the program domain, that the mapping between domains is not straightforward, and that students need to construct a model of the procedural aspects of a solution in order to properly design objects/classes. While the literature on expert programmers is more supportive of the naturalness and ease of object-oriented design it also shows that expert object-oriented programmers use both object-oriented and procedural views of the programming domain, and switch between them as necessary (Detienne, 1990). Similarly Rist (1995) describes the relationship between plans (a fundamental unit of program design) and objects as ‘‘orthogonal’’ (Rist, 1995). Yet the proponents of the objects-first strategy begin immediately with the notion of objects, classes, methods, constructors, and inheritance and then go on to introduce concepts of types, variables, values etc (Chang, Denning, Cross, Engel, & Shackelford, 2001). Having to assimilate all this and to gradually build up new knowledge comprises one of the biggest sources of difficulties for student programmers.

Imperative Vs Functional

The functional programming paradigm supports a pure functional approach to problem solving. Functional programming is a form of declarative programming. In contrast, most mainstream languages, including object-oriented programming (OOP) languages such as C#, Visual Basic, C++, and Java –, were designed to primarily support imperative (procedural) programming. With an imperative approach to teaching, students develop a piece of code that describes in exact detail the steps that the computer must take to accomplish the goal. This is often referred to as algorithmic programming. In contrast, a functional approach involves composing the problem as a set of functions to be executed. Students need to define carefully the input to each function, and what each function returns (see Figure 3). The two strategies have been used for a fairly long period of time. The functional strategy initially places emphasis on functions leaving the presentation of state for later, whereas in the imperative strategy the emphasis is first given to the state and then the concept of functions is presented.
A Framework for Teaching Programming
In addition to being able to produce compilable, executable programs that are correct and in the appropriate form, the students of computing should learn the process of solving discipline-specific problems irrespective of the particular programming paradigm. When faced with the crisis of student performance, the first step Michael et al. (2001) proposed was to abstract the problem from its description. Abstraction requires students to be well grounded in the idea of abstraction, starting from sub-algorithmic level.

At early stages of the course, relatively less detailed coding is required of the students but availability of a good selection of reusable classes and templates is essential. Eventually, algorithm analysis can become a springboard for principles of designing containers, as well as classic sorts and searches.
	Figure 1 Abutment
	
	Figure 2 Nesting

	
[image: image1.png]while (robot.isItenOnGround()
robot.turnlefe() ;
if (robot.isFacingWall()){
robot.turnlefe() ;
robot.turnlefe() ;
robot.turnlefe() ;
robot .moveForvards() ;

false){

i

else if (robot.isNotFacingUall())(
robot .moveForvards() ;
robot .moveForvards() ;
robot.turnlefe() ;
robot.turnlefe() ;
robot.turnlefe() ;

i
karel.pickUpFirstIvem()
#/end of instructions

	
	
[image: image2.png]7 this s the shortest way -10 instructions
robot.turnlefe() ;
while (rohot.isFacingWall(})
i
while (rohot.isFacingWall(}) {
robot.turnlefe() ;
robot.turnlefe() ;
robot.turnlefe() ;
robot .moveForvards() ;
robot.turnlefe() ;
3
robot .moveForvards() ;
robot .moveForvards() ;

By the end of the course, the students should have learnt that the default programming strategy is to reuse but they should have the concepts to start from scratch, if need be. Better still, since they will be thoroughly schooled in reuse, if they do code from scratch, they are more likely to think in terms of good abstractions that can be reused. For example, the method calls used in Figure 1 such as turnLeft() or moveForwards() are reused quite a few number of times in different sequences in order to meet specific needs which require of the students the skill of abstraction at sub-algorithmic level. de Raadt et al., (2009) call this strategy ‘abutment’ which is calling one method after another in the correct sequence that will solve the problem. This also involves the functional approach where the problem is composed as a set of functions to be executed. While developing those functions, one needs to define carefully the input to each function, and what each function returns. This is the ability teachers need to keep as the objective of their teaching at this level.
The scope and importance of this strategy may be dependent on the design approach adopted in the problem-solving process. However, the functional decomposition of a structured program often requires further decomposition. In teaching programming, abstraction is not only a required skill in designing the classes needed, but also in factorization of methods out of others that are already in the design. For example, ‘nesting’ or placing one action sequence inside another is another form of abstraction (Figure 2). In this strategy, the student must be able to take the sub-solutions and put them back together to generate the solution to the problem. This step probably involves creating an algorithm that controls the sequence of events.
The next level (Figure 3) of abstraction requires the students to be able to decide on an implementation strategy for individual classes, procedures, functions, or modules, as well as on appropriate language constructs. Although the solution should be correct and in the appropriate form that produces the right output, the emphasis, however, is that it should also be modularized, generalized, and conforms to standards. The focus for this strategy is the division of code into methods, and method signatures and names.
	Figure 3 Modularisation
	
	

	
	
	[image: image3.png]public void movePastDoor() {
robot.turnlefe(); ¢/ focerorth
robot.turnlefe() ;
if(rabot.isNotFacingiiall())

robot.moveForuards() ;

3
robot.turnlefe(); /7 foce south
robot. turnleft() ;)

	
	
	

	[image: image4.png]public void moveStacksicrossCorridor() {
while (robot.isNotFacingWall(}) {
1 travel length of caridar
if (robot.isTtemonGrownd())
pickUpItenstack() ;
moveStackicrossCorridor())
robot .moveForvards() ;

	
	[image: image5.png]public void moveStackhcrossCorridor() {
crossCorridar();
putDavnItenstack() ;
movePastDoar()
crossCorridar();

	
	
	

	
	
	[image: image6.png]public void crossCorridor() {
robot.turnlefe() ;
while(robat. isNotFacingWall())
robot .moveForvards() ;
3

robot.turnlefe() ;

Another aspect that needs mentioning here is that software development often adopts one or several architectural patterns as strategies for system organization. Expert programmers use these patterns purposefully. They in fact often use them informally and even nearly unconsciously. Good teaching needs to close the gap between the useful abstractions (constructs and patterns) of system design and the current models, notations and tools (Shaw and Garlan, 1996). Teachers need to identify useful patterns clearly and teach them explicitly by giving examples, comparing them, and evaluating their utility in various settings allowing students to develop a repertoire of useful techniques that go beyond the curricular limitations. Let alone the issues that might crop up when larger systems are to be developed, several previous studies find weaknesses in teaching a programming course to beginners where strategies were not taught explicitly (de Raadt, Toleman, & Watson, 2004).

Discussion and implications
Dede (2008) observes that no educational ICT is universally good, and the best way forward is to take instrumental approach and analyse the curriculum, teachers and students in order to select appropriate tools, applications, media, and environments. In the context of teaching IT programming, scholars (Biederman & Shiffrar, 1987; Reber, 1993; de Raadt, et al., 2007) have shown that explicit instruction strategies can be very powerful especially with regard to teaching programming. Recent studies (Muller, Haberman, & Ginat, 2007; Porter & Calder, 2003; Wallingford, 2007) have focused on teaching patterns in an attempt to represent sub-algorithmic strategies.

The following are ways strategies could be incorporated in assignments and examinations.

· Encouraging students to use particular strategies when generating solutions for assignments

· Awarding credit for application of strategies in assignment marking criteria

· Using problems that focus on programming strategies as part of the final examination

· Awarding credit for applying strategies in assessments was also done to encourage students to value this component of programming and devote more effort to learning it.

Academic and industry skill standards are needs closure integration in their design, development and dissemination. Teachers cannot undermine the relationship between academic and industry skill standards and the need to strive in order to reach a consensus in several central areas for better coordination between academic and technical standards. Workplace applications offered by the academic skills were rarely explicit. Industry skill standards included academic standards as abstract lists of skills unconnected to their use in the workplace. Despite consensus that standards should be set at a high level, most academic standards offered no absolute normative benchmarks against which to measure student performance and were set by educators based on their judgment about what students should know. The academic component of the industry skill standards called for skills that could be achieved well short of high school graduation. The most significant area of overlap between the two sets of standards was their use of process-oriented skills.

Conclusion

The act of programming is a process, and the output of this process should be a working program. If the resultant program does not work, then the process has not been successful and it is very hard to evaluate the process. It is simpler to give the student the environment in which they can produce the program and then only mark working programs. Once the students know that the only way to pass the assessment is to learn how to program, they develop a real interest in learning how to program. This motivation makes it much easier to teach these students.
References
ACM & IEEE-CS Joint Task Force on Computing Curricula 2001 (2001). Computing Curricula 2001, Ironman Draft. Association for Computing Machinery and the Computer Society of the Institute of Electrical and Electronics Engineers. Available: http://www.acm.org/sigcse/cc2001 [2001, 5/16/01].

Bennedsen, J., & Caspersen, M. E. (2008). Optimists have more fun, but do they learn better? On the influence of emotional and social factors on learning introductory computer science. Computer Science Education, 18(1), 1–16

Berg, W., Cline, M., & Girou, M. (1995). Lessons learned from the OS/400 OO Project. Comm. ACM, 38(10), 54-64.

Biederman, I., & Shiffrar, M. M. (1987): Sexing Day-Old Chicks: A Case Study and Expert Systems Analysis of a Difficult Perceptual-Learning Task. Journal of Experimental Psychology: Learning, Memory and Cognition, 13(4):640 - 645.

Brooks, R. E. (1983): Towards a theory of the comprehension of computer programs. International Journal of Man–Machine Studies, 18:543 – 554.

Chang, C., Denning, P. J., Cross, J. H., Engel, G., Roberts, E., & Shackelford, R. (2001). Computing curricula 2001. ACM Journal of Educational Resources in Computing, 1(3), Article #1, 240pp.

Chi, M., Bassock, M., Lewis, M. Reimann, P. and Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
Clear, T (2001). "Programming in the Large" and the need for professional discrimination. SIGCSE Bull. 33, 4 (December 2001), 9-10.

Coburn, D., & Miller, A. (2004). Assessment in Technology is not a Written Language Exercise. SET., 44-48.
Davies, S. P. (1993): Models and theories of programming strategy. International Journal of Man-Machine Studies, 39(2):237 - 267.

Dede, C. (2008). Theoretical perspectives of influencing the use of information technology in teaching and learning. In J. Voogt and G. Knezek, (eds.). International Handbook of Information Technology in Education. New York: Springer.

de Raadt, M., Toleman, M., & Watson, R. (2004): Training strategic problem solvers. ACM SIGCSE Bulletin, 36(2):48 - 51.

de Raadt, M., Toleman, M., & Watson, R. (2006): Chick Sexing and Novice Programmers: Explicit Instruction of Problem Solving Strategies. Australian Computer Science Communications, 28(5):55 - 62.

de Raadt, M., Toleman, M., & Watson, R. (2007): Incorporating Programming Strategies Explicitly into Curricula. Proceedings of the Seventh Baltic Sea Conference on Computing Education Research (Koli Calling 2007), Koli, Finland 53 - 64.

Detienne, F. (1990). Expert programming knowledge: A schema based approach. In J.M. Hoc,T.R.G. Green, R. Samurc¸ay, & D.J. Gillmore (Eds.), Psychology of programming (pp. 205–222). London: Academic Press.

Fayad, M. E., & Tsai, Wei-Tek (1995). Object-oriented experiences. Comm. ACM, 38(10), 51-53.

Frakes, W. B., & Fox, C. J. (1995). Sixteen questions about software reuse. Comm. ACM. 38(6) 75-87,112.

Gerdes, A., Jeuring, J. T., and Heeren, B.J, (2010). Using strategies for assessment of programming exercises. In Proceedings of the 41st ACM technical symposium on Computer science education (SIGCSE '10). ACM, New York, NY, USA, 441-445Auer, K. (1995). Smalltalk training: As innovative as the environment. Comm. ACM, 38(10), 115-117.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B., & Thomas, L. (2004): A multi-national study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4):119 - 150.

Mayer, R. E. (1981). A psychology of how novices learn computer programming. Computing Surveys, 1,pp. 121- 141.

Michael de Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and assessing programming strategies explicitly. In Proceedings of the Eleventh Australasian Conference on Computing Education - Volume 95 (ACE '09), Margaret Hamilton and Tony Clear (Eds.), Vol. 95. Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 45-54

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001. A multi-national, multi-institutional study of assessment of programming skills of first-year CS students.SIGCSE Bull. 33, 4 (December 2001), 125-180. DOI=10.1145/572139.572181 http://doi.acm.org/10.1145/572139.572181
Milne, I., & Rowe, G. (2002). Difficulties in Learning and Teaching Programming—Views of Students and Tutors. Education and Information Technologies, 7(1), 55-66.

Mittermeir, R., Syslo, M., Benaya, T., & Zur, E. (2008). Understanding Object Oriented Programming Concepts in an Advanced Programming Course. In Informatics Education - Supporting Computational Thinking (Vol. 5090, pp. 161-170): Springer Berlin / Heidelberg.

Muller, O., Haberman, B., & Ginat, D. (2007): Pattern-Oriented Instruction and its Influence on Problem Decomposition and Solution Construction. Proceedings of the 12th Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE 2007), Dundee, Scotland.

Pea, R. (1986). Language independent conceptual bugs in novice programming. Educational Computing Research, 2(1), pp. 25-36.

Pirolli, P., & Recker, M. (1994). Leaming strategies and transfer in the domain of programming.

Cognition and Instruction, 12, 235-275. Pirolli, P., B Bielaczyc, K. (1989). Empirical analyses of self-explanation and transfer in learning to program. In Proceedings of the 11th Annual Conference of the Cognitive Science Society (pp. 450-457). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Porter, R., & Calder, P. (2003): A Pattern-Based Problem-Solving Process for Novice Programmers. Proceedings of the Fifth Australasian Computing Education Conference (ACE2003), Adelaide, Australia 20:231 - 238, Conferences in Research and Practice in Information Technology.

Reber, A. S. (1993): Implicit Learning and Tacit Knowledge. New York, USA: Oxford University Press.

Rist, R.S. (1995). Program structure and design. Cognitive Science, 19, 507–562.

Robins, A., Rountree, J., & Rountree, N. (2003): Learning and Teaching Programming: A Review and Discussion. Computer Science Education, 13(2):137 - 173.

Shaw, M., and Garlan, D., (1996). Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Soloway, E. (1985): From problems to programs via plans: The content and structure of knowledge for introductory LISP programming. Journal of Educational Computing Research, 1(2):157-172.

Spohrer, J., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct? Communications of the ACM, 29(7), pp. 624-632.

Wallingford, E. (2007) The Elementary Patterns Home Page, http://cns2.uni.edu/~wallingf/patterns/elementary/. Accessed 18th April 2011.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robins, P., Kumar, P. K. A., & Prasad, C. (2006): An Australasian Study of Reading and Comprehension Skills in Novice Programmers, using the Bloom and SOLO Taxonomies. Proceedings of the Eighth Australasian Computing Education Conference (ACE2006), Hobart, Australia 52:243 - 252.

Winslow, L.E. (1996). Programming pedagogy – A psychological Overview. SIGCSE Bulletin, 28, 17–22.

ISSN-1176-7383

_1385888254

_1385888255

